Approach to Inborn Errors of Metabolism

Andrew M. Ellefson MD
Cpt, USA, MC
Pgy-2 NCC Pediatrics
Goals for this lecture:

- Discuss acute/emergency management of IEMs.
- Review broad categories of IEMs.
- Focus on Board favorite zebras.
- Complete the Board prep. Objectives in most recent 2006 edition.
- Integrate the “Laughing your way through Boards” tips.
- Have fun with this usually stressful topic.
What we WON’T DO:

- Memorize metabolic pathways.
- Mention, think of, or utter the enzyme α-ketoglutarate dehydrogenase complex.
- Laugh at, throw bagels or coffee at, or otherwise mock Drew.
- Discuss the adverse sequelae of the Eagle’s previous decision to recruit T.O.
IEM Board/Prep Goals:

- Recognize
 - Urea Cycle defects
 - Organic acidemias
 - S+S of CHO disorders
 - S+S of Galactosemia
 - S+S of hyperinsulinism
 - Glycogen Storage Dz
 - Lipoprotein Disorders
 - Gaucher + Lipid Storage Dz
 - S+S of Tay-Sachs
 - S+S of Fatty Acid and Carnitine metabolism

- Inheritance patterns
- Indication for genetics
- Eval of hypoglycemia
- Eval of acidosis
- Vitamin Rx for enzyme disorders
- Treat Hypoglycemia
- Natural Hx of PKU
- Plan/diet for PKU
- Manage Glycogen storage diseases- Type 1
IEM- Index of Suspicion:

- Rapid deterioration in an otherwise well infant.
- Septic appearing infant or abnl sepsis such as E.coli.
- Failure to thrive.
- Regression in milestones.
- Recurrent emesis or feeding difficulty, alterations in respirations, abnl urine/body smell, changing MS/lethargy, jaundice, sz, intractable hiccups.
- Can masquerade like pyloric stenosis.
- Dietary aversion- proteins, carbs.
Basic Principles:

- Although individually rare, altogether they are 1:800-5000 incidence.

- Broadly Defined: An inherent deficiency in a key metabolic pathway resulting in
 - Cellular Intoxication
 - Energy deprivation
 - Mixture of the two
History and Antecedent Events:

- Catabolic state induction (sepsis, fasting, dehydration)
- Protein intake
- Change or addition of PO proteins, carbs, etc... in formula
- **Gotta ask- Consanguinity
- FHx of SIDS
Assessment:

- **Detailed H+P**
 - Describe sz
 - Fevers
 - Milestones
 - FHx
 - Mom’s GsPs
 - NAT questions

- **Dysmorphology does not r/o IEMs**

- **Physical Exam:**
 - Vitals
 - Level of alertness
 - Abnl activity/mvmts
 - CV- perfusion
 - Dysmorphology, hair, smell, eyes-cornea
 - Abdo- HS megaly
 - Neuro- DTRs, tone, etc
 - Skin- bruise, pigment, color
Emergency Management:

- Can be life threatening event requiring rapid assessment and management.

 - ABC’s
 - ABG-acidosis
 - BMP, Ca and LFTs
 - NH4
 - Lactate, Pyruvate
 - CBC, Blood Cx if uncertain
 - Coags- PT/PTT
 - UA-ketones, urine reducing substances, hold for OA/AAs
 - Newborn scam results
 - LP- r/o Meningitis, but send lactate STAT, AAs, hold tubes for future
 - Drug tox screen if indicated.
 - **Hold spun blood or urine sample in fridge for later if possible.
 - **ABG, Lactate are iced STAT samples
 - **NH4 should be free flowing, arterial sample
Emergency Management:

- Correct hypotension.
- NPO, reverse catabolism with D5-D10 1-1.5 x maint.
- Correct hypoglycemia.
- Correct metabolic acidosis.
- Dialysis, lactulose if High/toxic NH4
 - (nl is <35μmol/L)
- Search for and treat precipitants; ie: Infection, dehydration.
- Low threshold for Sepsis w/u + ABx if uncertain.
- Pyridoxine for neonatal sz. if AED no-response
- Ativan, Versed, AEDs for status epilepticus.
Some quick supplements:

- **Carnitine** for elimination of Organic Acid through creation of carnitine esters.
- **Sodium Benzoate, Phenylacetate** for Hyperammononemia elimination.
Stable Patient, Now what?
You could memorize some of these:
The Daunting Differential List:

- **Transient Hyperammonemia of Newborn**
- **Inborn Errors of Metab:**
 - Organic Acidemias
 - Fatty Acid Oxidation def
 - Urea Cycle Defects
 - Amino Acidurias
 - Non-ketotic Hyperglycinemia
- **Molybdenum Cofactor Deficiency**
 - Sulfite Oxidase Deficiency
- **Metal Storage Disorders:**
- **Cholesterol Disorders:**
- **Leukodystrophies, other...**
 - Krabbe disease
- **Mitochondrial Disorders**
- **Glycogen Storage Disorders**
- **Hyperinsulinism**
- **Carbohydrate Disorders**
- **Lysosomal Disorders**
 - Mucopolysaccharidoses (X-linked Hunter’s, Hurler’s)
 - Gaucher disease
 - Tay-Sachs Disease
- **Peroxisomal Disorders**
 - Zellweger’s (Cerebro-Hepato-renal)
 - X-linked Adrenoleukodystrophy
Patient is stabilized. Now what:

- Broad DDx for IEMs scares people.
- You can group into KEY features.
- Can focus on initial labs = Hyperammonia, hypoglycemia, metabolic acidosis.
- Can focus on Prominent neurologic features.
- Can focus on Dysmorphic features.
- If these don’t exactly fit, resort back to categories of IEMs and Neurodegenerative Disorders.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NH4:</td>
<td>NH4:</td>
<td>NH4:</td>
<td>NH4:</td>
<td>NH4:</td>
<td>NH4:</td>
<td>NH4:</td>
<td>NH4:</td>
</tr>
<tr>
<td>Glu:</td>
<td>Glu:</td>
<td>Glu:</td>
<td>Glu:</td>
<td>Glu:</td>
<td>Glu:</td>
<td>Glu:</td>
<td>Glu:</td>
</tr>
<tr>
<td>Dz: *Non-ketotic Hyperglycine</td>
<td>Dz: *Urea Cycle defects</td>
<td>Dz: *Fatty Acid Oxs *OAemia</td>
<td>Dz: *OAemia</td>
<td>Dz: *OAemia</td>
<td>Dz: *OAemia</td>
<td>Dz: *Glycogen Strg dfc *Amino Aciduris *Carb Metabolism dfc</td>
<td></td>
</tr>
</tbody>
</table>
Transient Hyperammonemia of Newborn:

- Markedly high NH4 in an infant less than 24 HOL, or first 1-2 DOL before protein intake occurs.
- Often in context of large, premature infant with symptomatic pulmonary disease.
- Very sick infant.
- Unknown precipitant, unknown etiology (possible slow delayed urea cycle initiation), with potential for severe sequelae (20-30% death, 30-40% abnl devo) if not treated.
- Does not recur after being treated.
Organic Acidemias:

- *Acidotic* with high Gap
- *Urine Ketones* high
- *High to nl* Ammonia
- Often present first 2-7 days of life after dietary protein introduced.
- Drunk appearance in infant.
- *May have low WBC and Plts.*
- Check serum AAs/OAs, Urine AAs/OAs, CSF OAs/AAs.
Organic Acidemias cont:

- **Multiple Carboxylase Deficiency**

 or

- **Defect in Biotin Utilization**

 - Biotin is vital cofactor in many pathways, defect results in:
 - Severe deterioration, dermatitis, alopecia, immune deficiency- candidal skin infections.
 - High NH4, acidemic, ketotic like the others.
 - Dx by enzyme assay.
 - Rx with Biotin 10mg/kg/d PO

Rocky will get this if he consumes too much Avidin, aka, raw eggs.
Amino Acidurias:

- **Maple Syrup Urine Disease**
 - Sweet smell of body fluid esp Urine.
 - Classically develops in 1st week of Life.
 - Poor feeding, emesis, lethargy and coma.
 - Periods of Hypertonicity.
 - Secondary Hypoglycemia.
 - Possible Metabolic Acidosis, hyperammonemia
 - **Obtain serum/urine AAs/OAs**
 - Treatment requires rapid removal of Branched chain AAs, often through dialysis.
Amino Acidurias:

- Fresh Urine **Uric acid** and **Sulfite Dipstick** if neurologic abnormalities are present, low uric acid is suggestive for **molybdenum cofactor deficiency and Sulfite Oxidase Deficiency**.
- Don’t forget **PKU**. Basic on newborn scrn, but only does good if results followed up.
For the Boards:

- **Sweaty feet smell**
 - Isovaleric Acidemia, think *ISOTONER* shoes smell

- What defect may present with Pulmonary Embolus?

- **Homocystinuria** - and thereafter may ask which supplement to initiate?

- **Pyridoxine** - due to residual enzyme activity.

- Other names to know:
 - Methylmalonic Acidemia - Rx with large dose *vitamin B12*
 - Propionic Acidemia - RX with *Biotin*.
Urea Cycle Defects:

- All but one of the disorders is autosomal recessive.
- Symptom free period and then emesis → lethargy → COMA
- Key features:
 - High Ammonia, low BUN
 - Possible Lactic acidosis
 - *Absence of ketonuria*
 - NI to mild low Glucose
- **Treat high ammonia, infuse glucose, send plasma AAs/OAs, urine orotic acid, and plasma citrulline.**
- Infusion of 6ml/kg 10% Arginine HCl over 90 min may help.
- Milder forms may show episodic emesis, confusion, ataxia, and combativeness after high protein meals.
For the Boards:

- Most common Urea cycle defect and also only X-linked:
 - Ornithine Transcarbamylase Deficiency
Fatty Acid Oxidation Defects:

- **Autosomal recessive inheritance**
- Examples are MCAD, LCAD, VLCAD
- Defect in acyl-CoA Dehydrogenase, a mitochondrial duty, and important in fasting state.
- KEY features:
 - Acute attack of life-threatening coma with Hypoglycemia
 - Absence of urine ketones, and reducing substances, nl serum AAs.
 - +/- mild acidosis, or hyperammonemina, elevated LFTs, abnl coags. +/-Hepatomegaly-/+
 - Dx with serum Acylcarnitine Profile or fibroblast enzyme assay
For the Boards:

- Fetal Defect in LCHAD may result in Prenatal course complicated by:
 - Maternal HELLP syndrome
Non-ketotic Hyperglycinemia:

- Unique entity in that Glucose, NH4, pH are all normal.
- 4 types with varying ages of onset, however, classic form is Neonatal with onset in 1st week of life.
- Will present just like the other devastating IEMs. Lethargy, emesis, hypotonia, seizures, etc...
- Uncontrolled hiccups.
- Dx with no urine ketones, and Elevated Glycine.
- No effective Rx. Will require diet restriction.
- Long term is a devastating disease.
Carbohydrate related Disorders:
Galactosemia:

- First 1-2 wks of Life: Presents with hypoglycemia, jaundice, emesis.
- Secondary to intolerance of Galactose. Will be in baby’s first meals of breast milk or lactose containing formulas.
- Also index of suspicion for GramNeg or E.coli sepsis.
- Dx assisted by Non-glucose reducing substances in urine.
- Confirmation by Galactose-1-PO uridyl transferase activity in RBCs.
- Adverse sequelae include Cataracts, MR, persistent liver disease.
For the Boards:

- Which is worse?
 - Essential Fructosuria
 - Inherited Fructose Intolerance

- **Inherited Fructose Intolerance**
 - Occurs after ingestion of Fructose (sucrose= glucose + fructose)
 - Severe and life threatening intoxication of $\text{F}_\text{1-PO}_4$.
 - Presents with emesis, seizures and profound illness after ingestion of fructose.
 - May also present similar to Galactosemia.
 - Life long avoidance of fructose.
Glycogen Storage Disorders:

- **Type 1= Von Gierke’s:**
 - Shortly after birth: Severe lifethreatening Hypoglycemia
 - Lactic acidosis –due to isolated glycolysis of G6Po
 - Hyper-uricemia, hyper lipidemia
 - Increased association with epistaxis
 - *Hepatomegaly
 - **Adverse response to Glucagon with worsening Lactic acidosis

- Management requires IV glucose, and then as outpt, close NG corn-starch or glucose solution administration to achieve close to nl glucose homeostasis.

- Frequent snacks and meals. Continuous nighttime glucose infusions up to the age of 2.
Glycogen Storage Disorders:

- **Type 2 - Pompe’s disease:**
 - Normal Glucose
 - Do to an accumulation of glycogen in lysosomes.
 - **Ancient city of Pompeii was destroyed by Mt. Vesuvius- 79 AD**
 - Manifested by massive Cardiomegaly, Hepatomegaly, Macroglossia.
 - Fatal If results in CHF.
 - Limited therapies in Neonatal Variant.
 - Attempts at enzyme replacement ongoing.
Mitochondrial Disorders:

- Emerging spectrum of diseases with lifetime variation of presentation.
- Infantile/Neonatal: may present with encephalopathic picture, regressed milestones, cerebral cortical atrophy.
- Generally lab findings of:
 - Lactic Acidosis
 - NL to low serum pyruvate, in comparison to Lactate
 - NL organic acids.
 - *** Important to check CSF values of the above ***
Leigh’s Disease

- AKA- Subacute necrosing encephalopathy
- Due to defects in the mitochondrial electron transport chain.
- May have devastating presentation with significant developmental regression.
- Unfavorable natural history.
- May respond to host of supplements.
- **Other Mitochondrial disorders for completion sake**
 - MELAS, MERRF, Leber’s HON
Leukodystrophies:

- **Krabbe disease:**
 - **Type 1-** "Infantile" = irritability, hypertonia, hyperesthesia, and psychomotor arrest, followed by rapid deterioration, optic atrophy, and early death
 - **Type 2-** Late infantile
 - **Type 3-** Juvenile
 - **Type 4-** Adult

- A demyelination disorder due to CNS accumulation of galactosylceramide.

- Diagnosis: supported by cortical atrophy on CT/MRI, **High CSF protein** and definite evidence of deficient **GALC assay** in WBCs or skin fibroblasts.
Lysosomal Disorders
Focus on key differences:

- **Gaucher Disease:**
 - Infantile vs chronic juvenile
 - Organomegaly
 - Bone pain
 - Easy bruising
 - **low Plts, osteosclerosis, and lytic bone lesions**
 - MNEUNOMIC = “Clumsy Gaucho cowboy”

- **Tay-Sachs Disease:**
 - Progressive neurologic degeneration in first YOL and death by age 4-5 yo
 - AR inheritance with classic Jewish Ashkenazi relationship.
 - Increased startle reflex
 - Cherry red macula
 - Macrocephaly
Peroxisomal Disorders

- **Zellweger Syndrome**
- aka: Cerebro-hepato-renal syndrome
- Typical and easily recognized dysmorphic facies.
- Progressive degeneration of Brain/Liver/Kidney, with death ~6 mo after onset.
- When screening for PDs, obtain serum Very Long Chain Fatty Acids - VLCFAs
Further Evaluation in IEMs:

- **Head CT, MRI, Ophtho, Audio, EKG, EEG**
- Genetics consultation.
- Peds Neuro consultation.
Random Questions for the Boards:

- Amino Acids responsible for MSUD?
 - Valine, Leucine, Isoleucine

- Name 1 of the 3 classic Metal Storage disorders?
 - Menke’s Kinky Hair Syndrome (X-link recessive)
 - Wilson’s Disease
 - Neonatal Hemachromatosis

- Lysosomal storage disease associated with Adrenal Gland calcifications?
 - Wolman Disease
 - Fatty acid deposits, nl lipid panel
 - **Mneumo** = Wool Man Disease → white wool deposits.
Recognize that Smell:

- **Musty or Mousy:**
 - PKU
 - Boiled Cabbage
 - Tyrosinemia or hypermethioninemia
- **Maple Syrup**
 - maple syrup urine disease
- **Sweaty feet:**
 - isovaleric acidemia or glutaric acidemia type II
- **Cat urine**
 - multiple carboxylase deficiencies (Biotin deficiency)
Follow up Questions?

- Name some classic Mucopolysaccharidosis?
 - Hunter’s (X-linked, no corneal clouding)
 - Hurler’s (presence of Corneal clouding)
 - Morquio Syndrome (nl IQ, short, cloudy cornea) *tattoo on FI

- How are mucopolysaccharidoses Diagnosed?
 - Urine MPSs, definite with Skin Fibroblast Bx

- How to treat **Neonatal Hyperinsulinism**?
 - **Diazoxide** - inhibits pancreatic B-cell insulin secretion.
 - Child Dx with PKU, now diet restricted, but with progressive neuro deterioration. What else might be deficient?
 - **Tetrahydrobiopterin (BH4)**
Finally and to wet your appetite for Sat:

- Name this syndrome and the associated metabolic defect.
- **Smith-Lemli-Opitz Syndrome:** due to defect in **cholesterol synthesis**.

![Image A](image1.png)

![Image B](image2.png)
For Reference:

- AAP Guidelines to IEMs. DOI: 10.1542/peds.102.6.e69 *Pediatrics*
 1998;102;69- Barbara K. Burton
Quick Algorithms:

METABOLIC ACIDOSIS WITH INCREASED ANION GAP

- Normal lactate
 - Abnormal organic acids
 - ORGANIC ACIDEMIA
 - Dicarboxylic aciduria
 - FATTY ACID OXIDATION DEFECTS
 - GSD TYPE I, FRUCTOSE 1,6-DP DEFICIENCY; PEP CARBOXYKNASE DEFICIENCY

- Elevated lactate
 - Normal organic acids
 - Elevated pyruvate: normal L-P ratio
 - Hypoglycemia
 - No hypoglycemia
 - RESPIRATORY CHAIN DEFECTS; PYRUVATE CARBOXYLASE DEFICIENCY

NEONATAL HYPERAMMONEMIA

- Symptoms in first 24 h of life
 - Premature
 - THAN
 - INBORN ERRORS OF METABOLISM (i.e. organic acidemia or PC deficiency)
 - Full-term
 - Acidois

- Symptoms after 24 h of age
 - No acidosis
 - UREA CYCLE DEFECTS
 - PLASMA AMINO ACIDS
 - Absent citrulline
 - Urine orotic acid
 - Argininosuccinic aciduria
 - Citrulline moderately elevated; ASA present
 - Citrulline markedly elevated, no ASA
 - Citrullinemia
 - ORGANIC ACIDEMIAS
 - CPS deficiency
 - OTC deficiency