Effective expansion: Balance between shrinkage and hygroscopic expansion

Abstract:

Purpose: Investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a tooth restoration.

Methods: One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), two compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization (‘total shrinkage’) and during 4 weeks water storage at 37°C was measured using an optical method (N=10). Post-gel shrinkage was measured during polymerization using a strain gauge method (N=10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 weeks of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (N=8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using ANOVA and post-hoc tests (significance level 0.05).

Results: All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water, but had not completely compensated polymerization shrinkage after 4 weeks. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (~6.4µm) than with the other materials (~12.1 to ~14.1µm). After 1 day cuspal flexure reversed to +5.0µm cuspal expansion.
with the RMGI, and increased to +9.3µm at 4 weeks. After four weeks hygroscopic expansion compensated cuspal flexure in one compomer (Compoglass) and reduced flexure with Dyract and composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations.

Conclusion: Hygroscopic expansion was more effective in compensating shrinkage stress than would be assumed based on total shrinkage, because only post-gel shrinkage needed compensation. Effective expansion is therefore hygroscopic expansion minus post-gel shrinkage.
Effective expansion: Balance between shrinkage and hygroscopic expansion

Emily A. Suiter¹, Lydia E. Watson², Daranee Tantbirojn³, Jennifer S.B. Lou⁴, Antheunis Versluis⁵*

¹Department of Pediatric Dentistry, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA (E-mail: ekarr@uthsc.edu)
²Dental student, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA (E-mail: lwatson9@uthsc.edu)
³Department of Restorative Dentistry, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA (E-mail: dverslui@uthsc.edu)
⁴Department of Pediatric Dentistry, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA (E-mail: jlou3@uthsc.edu)
⁵Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA (antheun@uthsc.edu)

*Corresponding author:
Antheunis Versluis
Department of Bioscience Research
College of Dentistry, University of Tennessee Health Science Center
875 Union Avenue
Memphis, TN 38163, USA
E-mail: antheun@uthsc.edu
Telephone: +1 901 448 6372
ABSTRACT

Purpose: Investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a tooth restoration.

Methods: One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), two compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization (‘total shrinkage’) and during 4 weeks water storage at 37°C was measured using an optical method (N=10). Post-gel shrinkage was measured during polymerization using a strain gauge method (N=10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 weeks of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (N=8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using ANOVA and post-hoc tests (significance level 0.05).

Results: All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water, but had not completely compensated polymerization shrinkage after 4 weeks. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (–6.4µm) than with the other materials (–12.1 to –14.1µm). After 1 day cuspal flexure reversed to +5.0µm cuspal expansion with the RMGI, and increased to +9.3µm at 4 weeks. After four weeks hygroscopic expansion compensated cuspal flexure in one compomer (Compoglass) and reduced flexure with Dyract and composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations.

Conclusion: Hygroscopic expansion was more effective in compensating shrinkage stress than would be assumed based on total shrinkage, because only post-gel shrinkage needed compensation. Effective expansion is therefore hygroscopic expansion minus post-gel shrinkage.

KEY WORDS
polymerization shrinkage; hygroscopic expansion; resin composite; compomer; glass-ionomer
INTRODUCTION

Contraction stress from shrinkage during polymerization of resin-based restorative materials has been a clinical concern for more than 50 years (Bowen 1963). Material contraction during setting has been reported not only for resin-based but also for glass-ionomer based materials (Attin et al. 1995). Shrinkage stress induced by setting contraction has been associated with microleakage, secondary caries, marginal loss, enamel cracks, and post-operative sensitivity (Bausch et al. 1982; Tantbirojn et al. 2004). Fortunately, shrinkage stresses are relieved over time by stress relaxation and water absorption (Segura and Donly 1993; Vaidyanathan et al. 2003; Meriwether et al. 2013).

Absorption of water causes materials to swell, so-called hygroscopic expansion, which counters the contraction originating from the polymerization process (Bowen et al. 1982; Segura and Donly 1993; Kanchanavasita et al. 1995; Meriwether et al. 2013). Not only hydrophilic materials like resin-modified glass-ionomers (RMGI) show volumetric expansion in water (Attin et al. 1995), hydrophobic resin-based composites also exhibit hygroscopic expansion (Momoi and McCabe 1994; Martin et al. 2003; Sunbul et al. 2015). Compomers, which are polyacid-modified composite resins that share properties of both traditional composite resins and glass-ionomer cements, have also been shown to expand by the reduction in marginal gaps caused by polymerization shrinkage (Huang et al. 2002; Rosales-Leal et al. 2013). Compomers are fundamentally hydrophobic but have hydrophilic acid-functional monomers that absorb water to allow acid-base reactions for clinically-desirable properties such as fluoride release (Cattani-Lorente et al. 1999; Nicholson 2007). Although compensation of polymerization shrinkage is welcome, if hygroscopic expansion exceeds polymerization shrinkage it may reverse a shrinkage stress condition into expansion stresses, which could be equally harmful (Momoi and McCabe...
1994; Versluis et al. 2011; Park and Ferracane 2014). Hygroscopic expansion of RMGI and compomer core build-up and luting materials has been associated with cracks in all-ceramic crowns (Sindel et al. 1999). Glass-ionomer luting cements have also been reported to cause fracture of moderate-strength indirect ceramic restorations under clinical conditions (Christensen 2007).

Polymerization shrinkage and shrinkage stress as well as water absorption have been extensively studied. However, few have studied volumetric expansion from the water absorption, and expansion is usually determined with respect to the cured material volume instead of the volume of the uncured, pre-polymerization material. Rüttermann et al. (2007) measured hygroscopic expansion with respect to total shrinkage and found that it did not compensate for the shrinkage, which seems to contradict previously noted reports of expansion stresses. The relationship between hygroscopic expansion and shrinkage stress has received little scrutiny and appears based on the reasonable presumption that expansion compensates shrinkage. However, since the relationship between shrinkage and stress is not straightforward and depends on transient properties of the restorative and on the material and geometric properties of the restored tooth (Versluis et al. 2004B), the relationship between hygroscopic expansion and shrinkage stress compensation may also not be forthright. The objective of this study was to examine the balance between polymerization shrinkage and hygroscopic expansion with respect to the residual stress condition in restored teeth. The balance was tested for restorative materials that represented a range of hydrophilicity/hydrophobicity characteristics encountered in glass-ionomer, compomer, and resin-based composite.
MATERIALS AND METHODS

One resin-modified glass-ionomer (Ketac Nano), two compomers (Dyract eXtra and Compoglass), and one universal composite (Esthet•X HD) were tested. Material information is listed in Table 1. Light-curing was performed with a VALO LED curing light (Ultradent Products Inc, South Jordan, UT) in standard mode with an intensity of 1540 mW/cm² measured with Marc Patient Simulator (Bluelight Analytics Inc, Halifax, NS, Canada).

Volumetric changes

Dimensional changes (shrinkage or expansion) were determined using an optical method in which the projected surface area of a sample is measured from images captured by a stereomicroscope (Tantbirojn et al. 2015). Sample size was 10 for each material. Uncured restorative material, about 6 mm diameter and 1.5 mm thick, was placed on a silicone platform (Express, 3M ESPE) to ensure free shrinkage. A pre-polymerization image was captured from above with a stereomicroscope (SZX16, Olympus, Tokyo, Japan), immediately followed by a 40 seconds light cure. A post-polymerization image was captured 10 minutes after start of the light cure. Samples were stored dark at 37 °C in deionized water. Images were captured again after 24 and 72 hours, and 1, 2, and 4 weeks. Using public-domain image analysis software (ImageJ, http://imagej.nih.gov/ij/), the projected surface areas were determined by tracing the outlines of the captured sample images using the Magic Wand tool. Image brightness was adjusted to improve contrast between the sample and silicone platform. Dimensional changes in volume percent were obtained using \[1 – (A_1/A_0)^{3/2}\]×100%, where \(A_1\) was the projected surface area of the sample after polymerization or water storage and \(A_0\) was the projected surface area before polymerization; shrinkage was defined as a positive value. The results were the changes in total
volume after polymerization (‘total shrinkage’) and during storage in water compared to the original uncured material volume.

Post-gel shrinkage

Post-gel shrinkage was determined using a strain gauge method (Sakaguchi et al. 1997). Sample size was 10 for each material. Uncured restorative material was placed on a biaxial strain gauge (CEA-06-032WT-120, Measurements Group, Raleigh, NC, USA) connected to a quarter-bridge strain gauge input module in a USB chassis (NI 9235 and NI cDAQ-9178, National Instruments, Austin, TX, USA). The materials were light-cured for 40 seconds. The start of the light cure was recorded with a solar cell (AM-1417CA, Panasonic, Osaka, Japan) connected to an analog input module (NI 9215, National Instruments) in the USB chassis. Strain and solar cell output was collected at 4 Hz for 10 minutes using a customized data acquisition program (LabView, National Instruments). Strain values were zeroed at the start of the light cure, identified by the solar cell output. The two perpendicular strain components were averaged and the mean strain value was converted to volumetric shrinkage using \[3L - 3L^2 + L^3\] \times 100\%, where L was the strain; shrinkage was defined as a positive value (Tantbirojn et al. 2015).

Cuspal flexure

Eight sets of four extracted human molars (Institutional Review Board approval #14-03128-XM) with similar size and shape were selected. The teeth were securely mounted in stainless steel rings, which had four reference spheres (Tantbirojn et al. 2004). The coronal surfaces were etched with 37% phosphoric acid for 5 minutes to achieve a matt surface suitable for optical scanning. Teeth were kept hydrated in deionized water between all subsequent experimental steps. The teeth received mesio-occluso-distal slot preparations (4 mm wide, 4 mm deep). A
baseline scan was made 10 minutes after preparation to allow cusp relaxation following the preparation (Francis et al. 2014). Surface points on the teeth were scanned every 60 µm (resolution), in three dimensions, from 8 different directions, and with 5-µm accuracy (COMET xS, Steinbichler Optotechnik GmbH, Neubeuern, Germany). After the baseline scan, teeth were restored with the restorative materials using their respective self-etched primer/adhesive. Material information and restorative procedures are listed in **Table 1**. The restorative materials were placed and light-cured in two 2-mm thick horizontal increments. Light-curing was from occlusal direction, 20 seconds for the mesial half and 20 seconds for the distal half. Restorations were wiped with alcohol pads to remove the oxygen-inhibited layer and the restored teeth were rehydrated for 20 minutes before they were scanned. Restored teeth were stored dark in deionized water at 37 °C and scanned again after 1 day and 1, 2, and 4 weeks. Scans of the restored teeth were precisely aligned with their baseline scans (prepared teeth). This alignment was performed on the stainless steel reference spheres using Cumulus software (copyright Regents of the University of Minnesota), which minimizes root-mean-square differences between the reference surfaces. Buccal and lingual cuspal flexure (µm) was calculated over selected buccal and lingual surface areas using a custom software program (CuspFlex).

Occlusal interface integrity

The integrity of the occlusal interface was evaluated by measuring dye penetration along the buccal and lingual walls of the restorations. After the 4-week scans were completed, restoration margins were finished to remove excess restorative materials. Root apices were blocked with utility wax and roots were covered with nail polish. The teeth were immersed overnight in 0.5 wt% basic fuchsin solution, embedded in acrylic resin, and sectioned bucco-lingually every 1 mm, yielding 4-5 slices per tooth. Images of the restorations were captured under the SZX16.
stereomicroscope. Two evaluators independently measured dye leakage at the occlusal margins with image analysis software (Stream Basic, Olympus Soft Imaging Solution GmbH, Münster, Germany). Cavity width and wall thickness (buccal and lingual) were also recorded. Cavity width was 4.06 ± 0.12 mm and wall thickness was 2.70 ± 0.28 mm. Occlusal integrity was defined as the percentage of dye leakage distance for the respective buccal or lingual wall heights. If there was less than 5% difference between the two evaluators, the values were averaged; otherwise a consensus value was reached.

Statistical Analysis

Volumetric changes, post-gel shrinkage, and cuspal flexure were compared among the restorative materials using one-way ANOVA followed by Fisher’s Protected LSD post-hoc tests at 0.05 significance levels. Volumetric changes and cuspal flexure during storage were compared among the time intervals within each material using the same statistical methods.

RESULTS

Volumetric changes

There were significant differences in volumetric changes among the four materials (one-way ANOVA; $0.0001 \leq P \leq 0.0128$) and within each material during the 4-week exposure to water (one-way ANOVA; $0.0001 \leq P \leq 0.0182$). The RMGI had significantly higher total shrinkage 10 minutes after polymerization than the compomers and resin-based composite, which all had similar total shrinkage values (*Table 2*). Shrinkage decreased during storage in water, with the RMGI dropping sharply by 85% after only 1 day. Shrinkage values of RMGI remained
significantly lower than the other materials for 1 week, after which it was still significantly lower than the Dyract compomer and resin-based composite. The composite exhibited the least volumetric changes during water storage. Shrinkage of Compoglass compomer diminished slightly faster than the Dyract compomer and composite. At 4 weeks, none of the materials had completely compensated the polymerization shrinkage.

Post-gel shrinkage

One-way ANOVA indicated significant differences on post-gel shrinkage among the 4 materials (P=.0001). The lowest post-gel shrinkage value was found for the RMGI, and the highest for the Dyract compomer (Table 2). The post-gel shrinkage of the other compomer (Compoglass) was not significantly different from the resin-based composite.

Cuspal flexure

Examples of the cuspal flexure caused by polymerization shrinkage and hygroscopic expansion are visualized in Figure 1. There were significant differences in cuspal flexure among the four materials (one-way ANOVA; P=.0001) and within each material during the 4 week exposure to water (one-way ANOVA; .0001 ≤ P ≤ .0067). All restored teeth exhibited inward flexure of the cusps (shrinkage) after restoration, indicated by negative values in Table 3. The RMGI had significantly less inward cuspal flexure than the other materials, and reversed to outward flexure (expansion; positive values) after only 1 day storage in water, which increased gradually during the 4-week period. Cuspal flexure in the compomer and composite restored teeth were initially not statistically different from each other, and decreased significantly while stored in water. After 2 weeks differences appeared among them, where cuspal flexure with one compomer restoration (Compoglass) was significantly less than with the other compomer (Dyract) and the
resin-based composite. At 4 weeks, the RMGI restoration had overcompensated the initial cuspal shrinkage by about 250%, causing cuspal expansion, and one compomer (Compoglass) had compensated the initial cuspal shrinkage flexure. Most remaining cuspal shrinkage flexure was found with the resin-based composite restoration, although flexure had decreased by about 50% from the original value.

Occlusal interface integrity

One-way ANOVA indicated significant differences in occlusal interface integrity among the four restoration materials ($P=.0183$). The occlusal integrity, defined as the percentage of intact restoration wall and averaged for buccal and lingual walls, ranged from 73% (RMGI) to 94% (Compoglass compomer) (**Table 3**).

DISCUSSION

This study investigated volume change of restoratives during and after polymerization and how it affected the stress conditions in a restored tooth. It was found that the volumetric shrinkage caused by polymerization was not compensated by hygroscopic expansion after 4 weeks, with 38-95% of the polymerization shrinkage still present. Yet, the RMGI restoration caused substantial expansion of the cusps despite the 5% shrinkage remaining according to the measured volumetric changes for the RMGI material. Moreover, cuspal flexure was compensated in the Compoglass compomer restored tooth even though the material volume change measurements showed 27% total shrinkage remaining. And the cuspal flexure of the Dyract compomer and resin-based composite was reduced by 50-67% despite the total shrinkage reducing only 38-47%.
The cuspal flexure of restored teeth therefore appears to contradict the volumetric changes in the restorative materials.

Volumetric change due to hygroscopic expansion has been well documented in glass-ionomer based, compomer, and resin-based materials (Attin et al. 1995; Cattani-Lorente 1991; Jedynakiewicz and Martin 2001). In addition, hygroscopic expansion has been shown to compensate for marginal gaps, cuspal flexure, and polymerization shrinkage stress (Huang et al. 2002; Rosales-Leal et al. 2013; Meriwether et al. 2014; Park and Ferracane 2015). How hygroscopic expansion and stresses correspond has received little scrutiny. Tacitly it may be assumed that compensation of shrinkage will correspond with stress compensation. However, total shrinkage is not directly related to stress development and cuspal deformation because during the polymerization reaction not all shrinkage causes stress (Bowen 1963). Early in the polymerization process, usually called ‘pre-gel’, some shrinkage stress is compensated by flow in the restorative material (Versluis et al. 2004A). Post-gel shrinkage can be defined as the shrinkage component for which flow does not compensate stress development. Since cuspal flexure stresses the restored tooth, the cuspal flexure observed after polymerization of the restorations was caused by the post-gel shrinkage. Consequently, compensating shrinkage stress requires only the compensation of stresses caused by post-gel shrinkage; expansion beyond post-gel shrinkage will result in expansion stresses. The effectiveness of hygroscopic expansion for stress compensation should thus be expressed by the effective expansion, which can be defined as the difference between expansion and post-gel shrinkage. Figure 2 illustrates the differences among total volume change, effective expansion, and cuspal flexure.

The rate of water absorption and hygroscopic expansion depends on the surface area exposed to water, diffusion rate, and the thickness of the sample or restoration. It can be expected that the
For Peer Review

The hygroscopic expansion rate was much faster in the total shrinkage samples because they were exposed to the water from all sides and were thinner than the restorations, which had only one exposed surface and were much deeper. Therefore, the hygroscopic expansion and cuspal flexure cannot be directly compared at the same time periods. Moreover, even if the tooth shapes and properties would be comparable, the elastic modulus values and how they evolve during water absorption also affect the response of the cuspal flexure. Such complex relationships can be studied by finite element analysis, which unlike cuspal flexure, can provide insight into the corresponding internal stress distributions.

Nevertheless, this study showed that hygroscopic expansion is more effective in shrinkage stress compensation than may have been assumed based on water absorption studies. Hygroscopic expansion is generally viewed favorably because it closes gaps and is thought to be less deleterious or at least benign compared to shrinkage (Huang et al. 2002; Rosales-Leal et al. 2013). This may originate from the ‘wall-to-wall’ concept for shrinkage stress, which implies that shrinkage pulls on the interfaces between two cavity walls. Compressive forces from hygroscopic expansion would reverse those pulling forces. However, shrinkage stresses are not only ‘wall-to-wall’, they also act laterally in the interfacial plane. Those lateral stresses challenge the interfacial bonding as well and are likely to be equally deleterious in tension as compression.

In this study the interfacial integrity was examined at the end of the 4-week period. The lowest interfacial integrity was found for the RMGI that had the lowest post-gel shrinkage, exhibited the least cuspal flexure, and had high effective expansion; whereas the best interfacial integrity was found for the restorative that successfully compensated its cuspal flexure (Compoglass compomer). Although we could not determine at which stage interfacial integrity was lost and the bond strength for the different adhesive system-restorative combinations, it is not
inconceivable that this observation supports the hypothesis that excessive expansion may be as harmful for the survival of restorations in the long-term as polymerization shrinkage can be in the short-term.

This study was originally initiated to evaluate polymerization and water absorption effects of compomers and compare them with a hydrophilic RMGI and a hydrophobic resin-based composite. We found that the measured volumetric expansion for the materials was not enough to explain the observed cuspal flexure. In the literature few have noticed that hygroscopic expansion does not compensate polymerization shrinkage because the expansion is usually determined for materials that were cured already. Rütermann et al. (2007), however, measured hygroscopic expansion with respect to the uncured volume and also found that polymerization shrinkage was not compensated. To explain why hygroscopic expansion still has the potential to generate expansion stresses, we were reminded that Bowen (1963) noted that not all shrinkage causes stress during polymerization. Consequently, hygroscopic expansion only needs to counter the post-gel component of the total shrinkage to achieve compensation of shrinkage stress. This explains why hygroscopic expansion appears more effective in counteracting and even over-compensating shrinkage stress.
ACKNOWLEDGEMENTS

Supported by the University of Tennessee Health Science Center College of Dentistry Dental Alumni Endowment Fund and The Tennessee Dental Association Foundation. The authors also thank Dr. H. Yazdi for his ideas and input that initiated this project, Dr. R. DeLong for the use of the Cumulus software, Dr. J.F. Simon for the use of Marc Patient Simulator, and Dr. C. Veríssimo for his help with the National Instruments and LabView setup.
REFERENCES

FIGURE LEGENDS

Figure 1. Visualized cuspal flexure of teeth after restoration and after 1 day and 4 weeks storage in water.

Figure 2. Mean volumetric changes, effective expansion for compensating shrinkage stress based on compensation of post-gel shrinkage, and cuspal flexure for the restorative materials during 4-week storage in water.
Table 1. Material information* and bonding procedures

<table>
<thead>
<tr>
<th>Material</th>
<th>Composition & Application Procedures</th>
<th>Batch #</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyract eXtra</td>
<td>Resin system: UDMA, TCB resin, TEGDMA, trimethacrylate resin, camphorquinone, ethyl-4-dimethylamino-</td>
<td></td>
<td>Dentsply DeTrey GmBH, Konstanz,</td>
</tr>
<tr>
<td>(compomer)</td>
<td>benzoate, BHT, UV stabilizer</td>
<td>140912</td>
<td>Germany</td>
</tr>
<tr>
<td>Shade: A2</td>
<td>Fillers: strontium-alumino-sodium-fluorophosphosilicate glass, highly dispersed silicon dioxide, stron-</td>
<td>141205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rium fluoride, iron oxide and titanium dioxide pigments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CompoGlass F</td>
<td>Resin system: 19.3 wt% dimethacrylates</td>
<td>T08698</td>
<td>Ivoclar Vivadent AG, Schaan,</td>
</tr>
<tr>
<td>(compomer)</td>
<td>Fillers (80.5 wt%): ytterbium trifluoride, Ba-Al-fluorosilicate glass and spheroid mixed oxide</td>
<td></td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>Shade: A2</td>
<td>Catalysts, stabilizers, and pigments 0.20 wt%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esthet•X HD</td>
<td>Resin system: Bis-GMA adduct, Bis-EMA adduct, triethylene glycol dimethacrylate, camphorquinone, photoini-</td>
<td></td>
<td>Dentsply, Milford, DE, USA</td>
</tr>
<tr>
<td>(composite)</td>
<td>tiator, stabilizer, pigments</td>
<td>1412122 &</td>
<td></td>
</tr>
<tr>
<td>Shade: A2</td>
<td>Fillers: barium fluoroborosilicate glass with a mean particle size below 1µm and nanofiller silica (par-</td>
<td>140829</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ticle size 0.04µm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketac Nano</td>
<td>Resin system: methacrylate-modified polynalkenoic acid, methacrylate blend including HEMA, water</td>
<td>N612882</td>
<td>3M ESPE, St Paul, MN, USA</td>
</tr>
<tr>
<td>(RMGI)</td>
<td>Fillers (69 wt%): fluoroaluminosilicate glass, zirconia/silica nanofillers and nanoclusters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shade: A2</td>
<td>Filler loading: 69 wt% or 56 vol%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xeno III</td>
<td>Liquid A: HEMA 25-50%, ethanol 10-<25%, Liquid B: tetra-methacryloxy-ethyl-pyro-phosphate 50-100%, mono-</td>
<td>1407001260</td>
<td>Dentsply DeTrey GmBH, Konstanz,</td>
</tr>
<tr>
<td>(single step</td>
<td>nfluoro phosphazene modified polymethacrylate resin 10-<25%, diurethane dimethacrylate (mixture of isomers)</td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>self-etching</td>
<td>Procedures: mix one drop each from Bottles A&B for 5 sec, apply 10 sec, air dry >2 sec, light cure 10 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adhesive)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhese</td>
<td>VivaPen: HEMA 20-<25%, Bis-GMA 20-<25%, ethanol 10-<25%, 1,10-decanoldiol dimethacrylate 2.5-<10%, methacry-</td>
<td>T24701</td>
<td>Ivoclar Vivadent AG, Schaan,</td>
</tr>
<tr>
<td>Universal</td>
<td>lated phosphoric acid ester 2.5-<10%, camphorquinone 1-<2.5%, 2-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(single component adhesive)</td>
<td>dimethylaminoethyl methacrylate 1-<2.5% Procedures: push 2-3 clicks, scrub 20 sec, air dry 5 sec, light cure 10 sec</td>
<td>Liechtenstein</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Ketac Nano Primer (RMGI primer)</td>
<td>Primer: water 40 – 50%, HEMA 35 – 45%, copolymer of acrylic and itaconic acids 10-15% Procedures: apply 15 sec, air dry 10 sec, light cure 10 sec</td>
<td>N586209 3M ESPE, St Paul, MN, USA</td>
<td></td>
</tr>
</tbody>
</table>

(UDMA = urethane dimethacrylate, TCB resin = carboxylated acid modified dimethacrylate, TEGDMA = triethyleneglycol dimethacrylate, BHT = butylated hydroxy toluene, Bis-GMA = bisphenol A diglycidyl ether dimethacrylate, HEMA =2-hydroxyethyl methacrylate

*Sources: Product’s Safety Data Sheet, Product Profiles, Product website, Product Technical Manual.
Table 2

Mean (standard deviations) volumetric change of materials for post-gel and total shrinkage after polymerization, and volume changes during water storage at various time intervals. Different capital letters indicate significant differences between materials within one time interval (column); different lowercase letters indicate significant differences in volume changes among time intervals within one material (row) (ANOVA and Fisher’s Protected LSD post-hoc test; significance level 0.05).

<table>
<thead>
<tr>
<th>Materials</th>
<th>Post-gel shrinkage 10 min</th>
<th>Volume change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 min</td>
<td>1 day</td>
</tr>
<tr>
<td>RMGI (Ketac Nano)</td>
<td>0.35(0.07)</td>
<td>4.65(0.47)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Bb</td>
</tr>
<tr>
<td>Compomer (Compoglass)</td>
<td>0.56(0.03)</td>
<td>2.90(0.40)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Ad</td>
</tr>
<tr>
<td>Compomer (Dyrract)</td>
<td>0.63(0.03)</td>
<td>2.76(0.35)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Ab</td>
</tr>
<tr>
<td>resin-based composite</td>
<td>0.58(0.03)</td>
<td>2.73(0.28)</td>
</tr>
<tr>
<td>(EsthetX HD)</td>
<td>B</td>
<td>Ab</td>
</tr>
</tbody>
</table>
Table 3. Mean (standard deviation) of cuspal flexure (µm) and percentage of intact interface at the restoration walls. Negative cuspal flexure values indicate shrinkage (cusps moving inward), positive values indicate expansion (cusps moving outward). Different capital letters indicate significant differences among the materials at each time interval (column); different lower case letters indicate significant differences within a material (row) during the 4-week experiment. (ANOVA and Fisher’s Protected LSD post-hoc test, significant level 0.05).

<table>
<thead>
<tr>
<th>Materials</th>
<th>Cuspal flexure (µm)</th>
<th>% Wall intact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After restoration</td>
<td>1 day</td>
</tr>
<tr>
<td>RMGI (Ketac Nano)</td>
<td>–6.4 (5.5)</td>
<td>+5.0 (1.9)</td>
</tr>
<tr>
<td></td>
<td>Ba</td>
<td>Bb</td>
</tr>
<tr>
<td>Compomer (Compoglass)</td>
<td>–12.8 (2.6)</td>
<td>–9.9 (3.2)</td>
</tr>
<tr>
<td></td>
<td>Aa</td>
<td>Aa</td>
</tr>
<tr>
<td>Compomer (Dyract)</td>
<td>–14.1 (2.0)</td>
<td>–10.1 (2.7)</td>
</tr>
<tr>
<td></td>
<td>Aa</td>
<td>Ab</td>
</tr>
<tr>
<td>resin-based composite</td>
<td>–12.1 (3.3)</td>
<td>–9.9 (4.0)</td>
</tr>
<tr>
<td>(EsthetX HD)</td>
<td>Aa</td>
<td>Aab</td>
</tr>
</tbody>
</table>
Figure 1. Visualized cuspal flexure of teeth after restoration and after 1 day and 4 weeks storage in water.

133x99mm (300 x 300 DPI)
Figure 2. Mean volumetric changes, effective expansion for compensating shrinkage stress based on compensation of post-gel shrinkage, and cuspal flexure for the restorative materials during 4-week storage in water.

75x24mm (300 x 300 DPI)