Importance of normothermia

• Silverman et al. 1958
 ▫ Poor temperature control correlated with increased neonatal morbidity and mortality
• If admission temperature <35º C
 ▫ EGA 23 weeks = 58% mortality
 ▫ EGA 24 weeks = 43% mortality
 ▫ EGA 25 weeks = 30% mortality
Newborns are prone to heat loss

- Increased ratio of surface area to body mass
 - Term infants: 3x adult ratio
 - Preterm/SGA: 4x adult ratio
- Thin skin with little subcutaneous fat
- Superficial blood vessels
Physiology of thermoregulation
Fetal Heat Production

- Thermogenesis suppressed in utero
 - Intrauterine inhibition
- Most heat production from chemical reactions relating to growth/function
 - Last trimester: 3-4 W/kg heat generated (2x adult)
 - Fetal temp 0.5° greater than mother
Fetal Heat Production

• Mechanisms of heat dissipation
 ▫ 15%: **Conduction** through skin into amniotic fluid
 ▫ 85%: **Convection** through venous blood in placenta
Perinatal thermoregulation

• Governed by preoptic chiasma/anterior hypothalamic nuclei (POAH)
 ▫ Receives central sensory input and info from cutaneous temperature receptors
• Nonshivering thermogenesis
 ▫ Activated by sympathetic NE secreting nerve fibers
 ▫ Innervate brown adipose tissue (BAT)
• Shivering thermogenesis
 ▫ Activated by posterior hypothalamic nucleus
Cold Sensation (Internal)

- Thermosensors in POAH
 - Cooling evokes heat production and vasoconstriction
- Receptors also found in lower brainstem
 - Midbrain and medulla oblongata
 - Less sensitive than POAH
- Spinal cord
 - Extremely sensitive
 - Change of > 0.02° C sufficient to elicit shivering
Cold sensation (External)

- Fine unmyelinated nerve endings in basal layer of epidermis
- Have mitochondria connected to temp-sensitive Na/K pump
 - Converts cold stimulus to electrical signal
 - Exaggerated response to sudden change in temp
- Travel within spinothalamic tract in anterolateral spinal cord
- Change of 0.01°C sufficient to evoke sensation
Shivering

• Small, random muscle contractions
• Hydrolyzes ATP, + respiration, dissipates free energy as heat
• Primary motor center in posterior hypothalamus
 ▫ When hyper/euthermic, inhibited by POAH
• In adults, increases heat production 4-5x
Shivering

• 2nd line of defense for infant
 ▫ Higher surface to mass ratio
 ▫ Poorer thermal insulation
 ▫ Increases convective heat loss because of body oscillations

• Shivering ability not absent in neonates
 ▫ Observed with severe hypothermia
 ▫ Threshold is displaced to lower body temp
Nonshivering thermogenesis

- Brown adipose tissue (BAT)
 - 0.5-1.5% of total infant body weight in 3rd TM, 2-7% at term
 - Begins differentiation at 26-30 weeks
 - Continues development until 5 weeks after delivery
 - Near highly perfused organs or adjacent to vessels
 - Predominantly near kidneys and intrascapular area of back extending up dorsal neck
 - O_2 consumption increased 10x on exposure to NE
 - Effect mediated by β_3 and α_1 receptors
Nonshivering thermogenesis

- Thermogenic properties due to action of uncoupling protein (UCP1)
 - Found only in BAT
 - Allows protons into mitochondrial matrix
 - Uncouples oxidative phosphorylation from the production of ATP
- Preterm infants have lower amounts of BAT and decreased UCP1 expression
Mechanisms to control heat loss

- **Vasomotor**
 - Noradrenergic sympathetic stimulation causes:
 - Vasoconstriction in acral areas (fingers, hands, ears, lips, nose)
 - Vasodilation in trunk and proximal limbs
 - Minimal vasoconstriction on head and brow
Mechanisms to control heat loss

• Behavioral Regulation
 ▫ Postural reactions against overheating
 ▫ Flexion of extremities
 • Decreases surface area available for heat loss
 ▫ Cry to signal thermal discomfort and alert caregiver
Effect of hypothermia on metabolic rate

• MR increases initially with decrease in body temperature
 ▫ Can be prevented with deep general anesthesia
• Van’t Hoff’s law – rate of chemical reactions ↑ 2-3x for every 10°C ↑ in temperature
Effect of hypoxia on thermogenesis

- In animal studies, exposure to cold increases O_2 consumption by 100% or more
- Increase is attenuated if hypoxic
 - Conserves oxygen that would be used to generate heat
 - May reduce or override sympathetic activation of BAT in response to cold
Effect of hypoxia on thermogenesis

- Anaerobic metabolism insufficient to produce enough heat for thermoregulation
- Shivering thermogenesis not affected
- Infants with chronic hypoxia (CHD) are still able to manifest thermogenic response
Response to heat

- Term newborns able to sweat at birth
 - Greater density of sweat glands than adult
 - Primarily on forehead, temple, occiput
- Sweating absent in infants <36 weeks EGA
 - Appears by 2 weeks of age
- Vasodilation occurs in term and preterm infants
 - Skin warm/red when overheated
- Will decrease activity, sleep more, lie in extended position
Fever

- Neonates are capable of temperature elevations above 38-39°C with septicemia, purulent meningitis, and pneumonia
- Nonshivering thermogenesis is prevailing response
Fever

- Set-point displacement
 - Organism attempts to set and sustain a higher body temperature
- Activation of normal cold defense reactions at an elevated temperature
 - Begins with peripheral vasoconstriction, central vasodilation
 - Followed by enhanced thermogenesis
 - Adult = shivering
 - Infant = nonshivering thermogenesis
Fever

- Triggered by exogenous pyrogen (LPS)
 - Stimulates granulocytes and macrophages to produce endogenous pyrogen (IL-1)
 - IL-1 activates PLA2
 - Cell membrane phospholipids \rightarrow arachidonic acid
 - \rightarrow converted to PG
- PGE_2 produces set point shift in hypothalamus
- Antipyretics (ASA) inhibit COX activity and PG formation
Environmental factors affecting temperature
Mechanisms of heat loss

- **Conduction**
 - Transfer of heat from warm to cool surface
 - Objects in direct contact
 - 3% of body heat loss
 - Increased with wet clothing or immersion

- **Convection**
 - Heat loss by air or fluid circulating around the skin
 - 12-15% of body heat loss
Mechanisms of heat loss

- **Radiation**
 - Infrared heat emission into surrounding air
 - Primarily from head and non-insulated areas
 - 55-65% of heat loss
 - Heat loss is proportional to temperature difference between adjacent surfaces
 - Independent of speed and temperature of intervening air
Mechanisms of heat loss

- **Evaporation**
 - 560 calories of heat lost/mL evaporated water
 - 25% of heat loss
 - ¼ respiratory, ¾ transepidermal water loss (TEWL)
 - Affects term infants at delivery (amniotic fluid)
 - Preterm infants have increased TEWL
 - Thin, poorly keratinized stratum corneum
 - TEWL approaches that of newborn by 2-3 weeks
 - Use of radiant warmer increases TEWL 0.5-2x
Measures to prevent heat loss

• Conduction
 ▫ Pre-warm objects coming to contact with infant
 • Bed, stethoscope, blankets
 ▫ Chemical thermal mattresses can be placed under preterm infants for rewarming
Measures to prevent heat loss

• Convection
 ▫ Cover with plastic prior to transport
 ▫ Keep sides of radiant warmer up/port holes in incubator closed
 ▫ Heat/humidify O2
 ▫ Minimize skin exposure to environment
Measures to prevent heat loss

• Evaporation
 ▫ No bathing if infant hypothermic or unstable
 ▫ Dry infant thoroughly after delivery
 ▫ Increase ambient humidity
 ▫ Plastic blanket/film – decreases H₂O loss 75%
 ▫ Aquaphor/vegetable oil
 • Increased risk of coag negative staph infection
Measures to prevent heat loss

• Radiation
 ▫ Keep bed/incubator away from windows and outside walls

• Overheating can occur with radiant warmer or direct sunlight
Perioperative hypothermia

• Normal OR maintained at 23° C or below
• Multiple cold surfaces increase radiant heat loss
• Temperature gradient increases convective and evaporative heat loss
• Induction of anesthesia induces core to peripheral heat distribution
• Increased complications in infants
 ▫ Apnea, hypoxemia, hypercarbia, acidosis, impaired oxygen delivery
Perioperative Hypothermia

- 108 NICU patients who underwent surgical procedures in OR vs NICU
 - OR group had increased perioperative hypothermia (65% vs 13%)
 - Hypothermic patients
 - 3x higher rate of respiratory support interventions
 - 6x higher rate of cardiac support interventions

- Hypothermia in adults results in increased wound infections, EBL, adverse cardiac events
 - Vasoconstriction decreases oxygen delivery to wound
 - Starvation and anesthesia blunt response to cold stress
 - Increased evaporative losses by exposed organs
Effect of hypothermia on metabolic rate with anesthesia

Compensation lost at 30°C
Management of the operating room

- OR temperature 28-30° C (82-86° F)
- Use of forced air warming systems or radiant heater
- Insulate infant during transport
- Minimize area of exposure
Therapeutic hypothermia
Hypoxic ischemic encephalopathy

- Intrapartum asphyxia resulting in diminished supply of oxygen and blood to the brain, resulting in neuronal injury
- Incidence 1-8/1000 live births worldwide
 - Higher in areas without access to obstetric/perinatal care
- Extent of injury does not follow a wholly reproducible pattern
Hypoxic ischemic encephalopathy

- Precipitating conditions:
 - Prolapsed umbilical cord
 - Uterine rupture
 - Placental abruption
 - Amniotic fluid embolism
 - Acute maternal hemorrhage
 - Any condition with ↓ maternal cardiac output and fetal blood flow (anaphylaxis)
 - Acute neonatal hemorrhage
 - Vasa previa, bleeding from cord, fetal-maternal hemorrhage
Classification

- **Stage 1 (mild)**
 - Transient irritability, hypertonia, poor feeding
 - ~100% normal functional outcome
- **Stage 2 (moderate)**
 - Lethargy, hypotonia, hyporeflexia, seizure
 - 30-40% normal, 30-50% epilepsy
- **Stage 3 (severe)**
 - Profound stupor, coma, isoelectric EEG, flaccid, decerebrate posturing
 - 50-75% mortality, 80-100% disability
Hypoxic ischemic encephalopathy

- Acute phase: 0-6 hrs
 - Insufficiency delivery of O2 and substrates (glucose and lactate)
 - Neurons and glia unable to maintain homeostasis
 - ATP exhausted \rightarrow Na/K pump fails \rightarrow cell depolarizes
 - Cl and H2O enter cell \rightarrow cytotoxic edema \rightarrow lysis
Primary Phase: Hypoxia-ischemia

↓ Oxygen + ↓ Blood flow

Anoxic depolarization

↓ EAA

NaCl + H₂O entry

Ca²⁺ influx

Death receptors (FAS)

Intracellular events after reperfusion

Cell swelling

Biophysical damage

Acute cell lysis
Hypoxic ischemic encephalopathy

- Reperfusion
 - Oxidative metabolism recovers in 30-60 min
 - Resolution of acute cell swelling
 - Burst of superoxide and NO formation
 - Breakdown of blood-brain barrier
 - Increased brain swelling
 - Degradation of basement membrane by MMPs
Hypoxic ischemic encephalopathy

- Latent phase (6-15 hrs)
 - Activation of cell death pathways activated by:
 - Calcium influx – depolarization of mitochondria
 - Abnormal excitatory receptor signalling - ↑Ca influx
 - Loss of trophic support from astrocytic growth factors
 - Cytokine release
 - Activation of cell surface death receptors (Fas)
Reperfusion

- Tissue oxygenation
- Inflammatory cells
- Reactive oxygen species, NO
- Cell death pathways

Secondary Phase

- Failure of oxidative metabolism
- Intranuclear stage of programmed cell death
- Epiphenomena
 - Seizures
 - Local metabolism
- Hyperperfusion
- Cell swelling
- Cell Death
Effect of Cooling

- Suppression of programmed cell death
- Depression of metabolic activity
 - Reduced oxygen demand
- Inhibits induction of proinflammatory cytokines
 - IL-10, TNF α, IFN γ
- Reduced cytotoxic edema
- Reduced secondary injury (seizures)
Inclusion criteria:

- <6 hours since birth
- >36 weeks gestation
- >1800 grams
- Cord or neonatal blood gas pH <7.0 or BD >16
- Abnormal neurologic exam
 - APGAR <3 after 5 minutes
- Experimental
 - >6 hours since birth
 - 34-36 weeks
Results

- 8 RCTs – 630 infants with moderate/severe HIE
 - Decreased risk of major death/disability (RR 0.75)
 - Death RR 0.74, Disability RR 0.92
 - Benefits seen with whole body cooling (vs. head)
 - Adverse effects
 - Decreased baseline HR (RR 5.96)
 - Increased need for BP support (RR 1.17)
 - Platelet count <150 (RR 1.55)
 - No difference in arrhythmia, transfusion, bleeding, hypoglycemia, sepsis
References

Questions?