Transmyocardial laser revascularization
Meena Nathan, MD, and Sary Aranki, MD

Low-powered lasers were first used in the early 1980s to produce transventricular channels as an adjunct to coronary artery bypass graft surgery (CABG). Early results were encouraging, but because of the combined procedure, could not be attributed directly to use of the laser [1]. High-powered lasers were introduced into clinical practice in 1990 [2]. These lasers are powerful enough to create a transmyocardial channel with minimal thermal damage to surrounding tissues [3]. Clinical studies, using transmyocardial laser revascularization (TMR) as the sole operative therapy for patients with severe and diffuse coronary artery disease (CAD) who have Class III or IV angina, and are on medical therapy, have been conducted since 1993. Based on the results of these studies, the FDA granted approval for the use of TMR as a sole therapy. Clinical studies are currently underway to assess the results of combined TMR and CABG [4]. Results of four controlled randomized studies have been published [5–8]. The data from two of these studies formed the basis for FDA approval of two different types of laser systems. The results of these studies have not provided any additional insights into the mechanism of action of TMR, which remains the Achilles’ heel of this procedure. In this review, background information about the TMR procedure will be discussed along with an analysis of the recently published randomized studies. Curr Opin Cardiol 2001, 16:310–314 © 2001 Lippincott Williams & Wilkins, Inc.

What is TMR?
In TMR, a high-energy laser is used to create a channel from the epicardial surface into the left ventricular chamber. The concept of delivering oxygenated blood from the left ventricular cavity to pre-existing myocardial sinusoids and to ischemic myocardium was the initial hypothesis behind the use of TMR [9,10]. Although sinusoids may occur in reptilian hearts, their existence and role in mammalian hearts is doubtful [11]. Even if these channels remain open, there might be a physiologic hindrance to blood flow through these channels during myocardial contraction accompanied with a siphoning effect during myocardial relaxation [12].

Histology studies have shown that laser energy causes an injury and a healing-inflammation sequence that result in scar formation and channel closure [13]. Although there is an increased blood vessel formation within and around these channels, their role in improving myocardial perfusion remains undetermined [14]. However, this increase in vascular density around the channels may be beneficial in diminishing anginal symptoms. Direct damage of ischemic tissue, secondary to laser-induced myocardial infarction, has also been postulated as contributing to the relief of angina. In addition, sympathetic denervation secondary to tissue damage or nerve injury as a result of direct laser energy may also be responsible for the relief of angina. Finally, a placebo effect should always be considered when a new therapy without a definitive mechanism of action is introduced. It is feasible that one or more of these various mechanisms may be responsible at different time periods for the relief of angina [15].

Laser-tissue interactions
Laser-tissue interactions and the desired effects needed determine which type of laser is used. Different types of lasers are used for different biological purposes [16]. The laser wavelength and frequency, along with the optical properties of target tissues, determine the type of laser-tissue interaction. In turn, this is determined by photonic absorption and scattering by the target tissue, pulse energy and duration, and the peak power generated [17].

The types of lasers currently used for TMR are mainly the carbon dioxide (CO₂) and the Holmium- Yag (Ho:
Yag) lasers. Another type of laser is the Excimer laser. The CO₂ and Ho:Yag lasers are infrared lasers exerting their effect by vaporizing water molecules. These lasers have frequencies similar to the vibration frequency of water. Absorption of laser energy by water molecules results in heating, evaporation, and tissue ablation. The Excimer laser, on the other hand, operates in the ultraviolet range and exerts its effect by dissociating the dipeptide bonds of proteins. Because the myocardium is composed predominantly of water and proteins, these types of lasers are ideal for creating trans myocardial channels [18].

Candidates for TMR

Patients selected for TMR are more likely to have diabetes and multiple risk factors for CAD and usually have had prior conventional coronary revascularization. Indeed, multiple prior procedures are common. In spite of this, severe angina, not controlled with intense medical therapy and present as Class III or IV symptoms and poor quality of life, is the indication for the procedure. Patients with congestive heart failure and poor left ventricular function are not good candidates for TMR. Objective evidence for ischemia of the free wall of the left ventricle is an essential prerequisite for this procedure. Septal ischemia alone is a contra indication for TMR, because the epicardially applied laser beam cannot reach the septum [19].

An increasing number of these patients (unsuitable for standard revascularization) are being referred to tertiary centers where TMR is performed. Nevertheless, the number of those patients who require TMR as a sole therapy is very small compared with patients undergoing CABG or PTCA [20]. However, it is probably more likely that patients requiring a combined TMR and CABG may represent a much larger proportion of CABG procedures.

Surgical procedure

The procedure is performed under general anesthesia through a limited left anterior thoracotomy. The majority of these patients have had previous CABG procedures and thick scar tissue is usually abundant. Care must be taken to prevent injury to the left phrenic nerve, left ventricle, epicardial vessels, as well as to any patent or diseased grafts. When the free wall of the left ventricle is exposed, TMR is performed. With CO₂ laser, a single energy pulse is used to create the laser channel. With the Ho:Yag laser, multiple pulses with a laser probe are required. The laser energy causes tissue ablation and vaporization that can be detected as a puff of smoke on transesophageal echocardiogram when the laser transverses the free wall of the left ventricle [21]. Laser energy is dissipated by the blood in the left ventricle, which minimizes injury to the mitral valve apparatus [19]. After the laser channels are created, blood spurts through until a clot is formed on the epicardial surface. Hemostasis is achieved by digital compression. This pulsatile bleeding is the only irrefutable evidence that blood is flowing through the newly created channels [22]. How long these channels remain open and to what extent the blood flows through them to contribute to angina relief remains a matter of controversy.

Cardiopulmonary bypass is not necessary and the procedure is performed on a beating heart. The CO₂ laser is synchronized to the electrocardiogram. The laser pulse is fired on the peak of the R-wave when the heart is electrically and mechanically quiescent. This reduces the incidence of arrhythmias and structural damage to the mitral valve apparatus [23]. Ten to fifty 1-mm channels are created in the ischemic zone of the left ventricular free wall. Besides the exposure and localization, the actual operative technique of TMR is fairly simple.

Clinical trials

By the nature of the operative procedure, double-blind randomized trials have not been conducted with TMR. The largest clinical experience to date has been with the CO₂ laser (PLC Medical Systems, Franklin, MA). Horvath [24] reported that over 2500 patients worldwide underwent TMR with this system. Most published reports before 1999 were either retrospective or nonrandomized prospective studies [3,18,21,23]. In 1999, four prospective randomized studies were published. One study was from the United Kingdom where the CO₂ laser was used (UK/CO₂) [5]. The other three studies are from the United States; one of these studies used CO₂ laser (US/CO₂) [7] and the other two studies used the Holmium-Yag laser (US/HY₁ [6] and US/HY₂ [8]). Regardless of the nature of the laser, it is prudent to interpret them by analyzing patient’s characteristics, operative techniques, and various endpoints collectively to get a broader view about the clinical outcomes with TMR.
diabetes, hypertension, hypercholesterolemia, smoking, and family history was similar for the 4 studies. The higher percentage of diabetic patients compared with CABG patients in these studies reflects the severe and diffuse nature of CAD in this patient population, selected as unsuitable for conventional revascularization procedures. In the US/HY1 study, an additional inclusion criteria of a protected region of the left ventricle was required. This was defined as a territory that was supplied by an unobstructed blood flow (no lesions >50%) through a major native vessel or previously placed bypass grafts. This inclusion requirement was based on previously reported data of increased operative mortality in the absence of such protection [25]. The operative technique was essentially the same in the 4 studies. In 3 of the studies, a mean of 30 to 39 channels were created in the free wall of the left ventricle. The US/HY1 reported a median of 19 channels with a range of 9 to 42. The channels were about 1 mm in diameter placed at a density of 1 channel/cm².

Mortality and morbidity

The 30-day mortality ranged from 1 to 5%. The US/HY1 study had a mortality of 1% and the authors contributed this low mortality to the presence of a protected region of the left ventricular myocardium. The 30-day mortality for patients randomized to medical therapy was 2% as reported by the US/CO2 and US/HY2 studies. These two studies allowed patients to cross over from medical to laser therapy for unstable angina. The operative mortality for this group (crossover patients) was 15% and 9%, respectively. The US/CO2 study found that unstable angina and low ejection fraction were independent predictors of perioperative mortality. The risk of death increased by over 20-fold when the time between unstable angina and surgery was less than two weeks.

Perioperative morbidity included myocardial infarction, atrial arrhythmias, worsening congestive heart failure, pneumonia, and wound cellulitis. As expected, the overwhelming causes of mortality and morbidity were cardiac in origin. There was one procedure-specific complication with laser-induced injury to the mitral valve apparatus that required repair.

Survival at 12 months ranged from 85 to 96% in TMR patients compared with a range of 79 to 96% for medical therapy patients. In none of the studies was there a significant prolongation of survival in the TMR group.

Results of treadmill stress test

Two of the studies had duration of treadmill exercise as a primary end point. In the UK/CO2 study, the difference in exercise time at 12 months was 40 seconds in favor of TMR, but this difference was not significant. The test was stopped more frequently for angina in medical patients and for dyspnea or fatigue in TMR patients. In the US/HY1 study, there was a median of a 60-second improvement in exercise duration at 12 months in TMR patients, while more than 50% of medical patients had a 64% reduction in exercise tolerance. Overall total exercise tolerance increased by a median of 65 seconds in TMR patients compared with a median reduction of 46 seconds in medical patients. This difference was significant ($P < 0.0001$). A deterioration of exercise duration by 60 seconds or more occurred in 17% of TMR patients compared with 45% of medical therapy patients. The US/HY2 study did not have a baseline treadmill exercise evaluation. However, in a subgroup of 90 of the 275 patients, there was a greater exercise tolerance of TMR patients (5 ± 0.7 MET vs 3.9 ± 0.8 MET, TMR vs medical therapy, $P = 0.05$).

Angina status and medications

The four studies showed a significant improvement in the frequency and severity of angina after TMR. The extent of improvement varied from 25% for the UK/CO2 study to 65 to 75% in the three US studies. Clinical success was defined as a reduction of two CCS angina classes at follow-up review. The US/HY1 showed that TMR had a differential effect on angina improvement in relation to baseline severity. For patients with class IV angina, 67% were improved versus 59% for class III. This is compared with 12% versus 10%, respectively, for medical patients. All four studies showed a significant reduction in the number of hospital admissions for unstable angina or for cardiac-related causes in the TMR group compared with medical treatment patients. Anti-anginal medications were significantly reduced in the UK/CO2 and the US/HY2 studies after TMR. The other two studies showed no such significant reduction.

Nuclear scans

The UK study used technetium-99m-labelled sestamibi, while the three US studies used dipyridamole thallium stress testing (Table 1). All four studies showed no change in the proportion or number of fixed segments from baseline to 12 months after randomization. Three of the studies showed no significant change in the proportion of ischemic segments at baseline and follow-up. However, the US/CO2 study showed a reduction in ischemic segments after randomization to TMR and an increase in ischemic segments after randomization to medical therapy ($P = 0.002$). Symptomatic relief of TMR patients was not generally supported by objective improvements in perfusion imaging [26].

Cardiac events and quality of life

There was no significant difference in cardiac events such as acute myocardial infarction and congestive heart failure between patients randomized to TMR or medical therapy. In addition, in two of the studies (UK/CO2 and US/HY1), no changes in left ventricular function were
detected as measured by ejection fraction changes from baseline to 12-month follow-up review.

The UK/CO₂ study collected information on health-related quality of life and detailed resources used, but the results were not reported. In the US/HY₁ and US/CO₂ studies, the Seattle Angina Questionnaire (SAQ) was used to assess quality of life at 12-month follow-up review. Both studies reported that quality of life index scores were significantly better for the TMR group. In addition, the US/CO₂ study also used the short form questionnaire (SF-36) and reported 38% improvement for TMR patients in general physical and mental perception, compared with 6% for medical patients (P < 0.001). In the US/HY₂ study, the Duke activity status index was used to assess the quality if life. This is based on a scale from 0 to 58 with higher scores indicating greater functional capacity. At 12 months, the score was 21 ± 14 for TMR patients and 12 ± 11 for medical patients (P = 0.003).

Summary of randomized trials

The results of these randomized studies show a definite improvement in anginal symptoms in TMR patients, without any substantial change in pre-operative anti-anginal medications. These symptomatic improvements are translated into better quality of life as self-reported by patients on questionnaires. In addition, there was a significant reduction in the need for hospital admissions for unstable angina and for cardiac causes after TMR. If this pattern holds for the long term, it may have an impact on cost reduction after TMR compared with medical therapy for treatment of refractory angina. The objective evidence for increased perfusion after TMR to explain these improvements in symptoms has not been forthcoming. Only one study showed some improvement in myocardial perfusion after TMR, but this increase was disproportionate to the improvement in symptoms. Another objective assessment was the duration of exercise. Only two studies assessed exercise duration at baseline and after randomization [5,6]. One study showed some improvement that was not statistically significant, while the other showed significant increase. In the other two studies, there were no baseline stress data and only one had such data at 12 months in only one-third of the patients, where TMR patients had better exercise durability [8]. One possible reason for this discrepancy in results is the sensitivity of nuclear scans in measuring any changes in perfusion after TMR.

Other interesting results not highlighted by the investigators of these studies were survival, ejection fraction, freedom from cardiac events, and the extent of fixed defects on nuclear scans. Analyzing these results may provide some circumstantial evidence either for or against some proposed mechanisms of action of TMR. Survival at 12 months after TMR was similar to that in medical therapy patients, despite the operative mortality. Similarly, there was no difference in ejection fraction, the rate of cardiac events, and the proportion of fixed defects on nuclear scans between the two groups. These findings argue against important laser-induced myocardial damage. In addition, sympathtic denervation as a reason for symptomatic improvement might be doubtful. Denervation can lead to silent ischemia, myocardial infarctions, and death. Such findings were not reported after TMR.

References

7. Frazier OH, March RJ, Horvath KA: Transmyocardial revascularization with a

